PHYSICAL REVIEW B 80, 224504 (2009)

54

Kinetic magnetism and orbital order in iron telluride

Ari M. Turner,! Fa Wang,'? and Ashvin Vishwanath'?
'Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 20 July 2009; published 10 December 2009)

Iron telluride (FeTe), a relative of the iron-based high-temperature superconductors, displays unusual mag-
netic order and structural transitions. Here, we explore the idea that strong correlations may play an important
role in these materials. We argue that the unusual orders observed in FeTe can be understood from a picture of
correlated local moments with orbital degeneracy, coupled to a small density of itinerant electrons. A compo-
nent of the structural transition is attributed to orbital, rather than magnetic ordering, introducing a strongly
anisotropic character to the system along the diagonal directions of the iron lattice. Double exchange interac-
tions couple the diagonal chains leading to the observed ordering wave vector. The incommensurate order in
samples with excess iron arises from electron doping in this scenario. The strong anisotropy of physical
properties in the ordered phase should be detectable by transport in single domains. Predictions for ARPES,

inelastic neutron scattering and hole/electron doping studies are also made.
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I. INTRODUCTION

The discovery of high-temperature superconductivity in a
class of iron based materials! has opened a new route to
high-temperature superconductivity besides the ones operat-
ing in the copper oxide materials. Following the initial dis-
covery in LaOFeAs (1111 materials), a number of classes of
materials were discovered that shared similar properties, no-
tably the 122 materials (such as BaFe,As,). In these systems,
(collectively referred to as the FeAs materials) the undoped
compound is a metallic spin density wave (SDW) system,
with ordering wave vector (7,0), which on doping leads to a
superconducting state. The magnetism in these materials is
believed to arise from Fermi surface nesting, given the pres-
ence of an electron and hole pocket separated by (7r,0) in the
local density approximation (LDA) band structure calcula-
tions of these materials. In fact, theoretical studies had pre-
dicted this ordering before it was confirmed in neutron scat-
tering experiments. Moreover, the typically small ordering
moment, e.g., about 0.3z in LaOFeAs, and the absence of a
Curie-Weiss form of magnetic susceptibility above the order-
ing temperature have been invoked as evidence for the itin-
erant character of the magnetism. Finally, signatures of an
excitation gap appear in optical conductivity experiments, on
cooling through the SDW transition.?

An important recent development has been the discovery
of superconductivity in another class of materials, FeSe and
FeTe, which share the square lattice Fe structure of the FeAs
materials and are believed to be closely related. Indeed, su-
perconductivity has been observed in FeSe even in the ab-
sence of doping at 8 K, rising to 37 K on application of
hydrostatic pressure. The chemical simplicity of these mate-
rials, as well as the absence of a pnictide group element, may
offer valuable clues to isolating the physics of the iron-based
high-temperature superconductors. One notable difference
from the FeAs materials though, is in the magnetism. While
FeSe is nonmagnetic even at stoichiometry, the FeTe materi-
als are magnetically ordered metals, but with a more compli-
cated kind of order than seen in FeAs, shown in Fig. 1. The
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ordering wave vector is (7/2,7/2), in contrast to the (7,0)
ordering of the FeAs compounds and also the (7, 7) order-
ing of the insulating parent compound of the cuprate super-
conductors. (Note: the wave vectors here are defined with
respect to an unfolded zone corresponding to a unit cell of
one iron atom, and oriented along the iron square lattice. The
actual basis vectors are X+ y because of the alternating po-
sitions of the tellurium ions; therefore, crystallographic stud-
ies use a doubled-unit cell, and a and b are along the diago-
nals of the iron lattice.) The order sets in via a first order

FIG. 1. The commensurate (72—7,7%) spin ordering pattern of
Fe,Tey, close to x=0. The spins reside on the iron atoms, which
form a square lattice. The tellurium atoms alternate above (x’s) and
below (0’s) the iron plane. When the spins order, the square lattice
of irons distorts into an approximately rhombic lattice. We assume
that the monoclinic distortion is a consequence of the spin ordering.
The tellurium atoms move toward (or away from) the exceptional
iron spin in each parallelogram. Thus, the planes of tellurium atoms
shift in opposite directions, producing the monoclinic distortion.
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transition at 87 K, and is accompanied by a monoclinic
distortion.? In the presence of excess iron, i.e., Fe,,,Te, the
commensurate order is found to evolve into an incommensu-
rate spiral.* Whether this complex magnetic behavior is im-
portant to understanding other physics in this material is
presently unclear. So far, it is unique to FeTe, where super-
conductivity only occurs on substantial alloying with sulfur
FeSy,Teyg or selenium FeSe,sTe,s. However, besides the
interest in understanding the origin of this unusual magne-
tism, there are a number of indicators that point to the pres-
ence of strong correlations in FeTe, which would be an im-
portant fact to establish in these materials. (1) The ordered
magnetic moment in the commensurate phase of FeTe is
large, ~2,u3,5 consistent with a localized S=1 at every site.
(2) Above the ordering temperature the magnetic susceptibil-
ity falls off in a Curie Weiss fashion,® roughly consistent
with the observed ordered moment and transition
temperature,’ (3) given the absence of Fermi surface nesting
at this wave vector,® a spin-density wave scenario seems less
favorable than a local moment picture. Furthermore, ARPES
(angle resolved photoemission spectroscopy) experiments on
this material see no obvious nesting at the desired wave
vector,” and (4) optical conductivity, which observes a clear
SDW gap in the FeAs materials, does not see an analogous
gap in FeTe.! Another mechanism is therefore needed to
explain the peculiar spin ordering. Here, we will assume that
the magnetism in FeTe arises from local magnetic moments
on the iron sites, that arise from strong correlations. How-
ever, given that FeTe is metallic [with a residual resistivity of
0.2 mQ cm (Ref. 10)], we will have to consider them as
being “self-doped.” The key point of this paper is that sev-
eral of the puzzling magnetic properties of FeTe can be natu-
rally explained if we assume it is near a correlated insulating
state with spin and orbital degeneracies. Furthermore, the
structural distortion here will be explained as arising, at least
partially, from orbital ordering, rather than spin lattice inter-
action as is usually assumed. A model for FeTe’s ordering, in
which the lattice distortion is assumed from the outset is in
Ref. 11. Other scenarios based on an itinerant electron pic-
ture have also been put forward,'? such as the possibility that
electron doping is large enough to change the Fermi surface
shape and lead to nesting.'?

The main assumptions we make in this paper are: (i) FeTe
is proximate to an S=1 magnetic insulator. (ii) Each site of
this insulator has orbital degeneracy (d;,d,) and the Jahn
Teller effect leads to orbital ordering, which orients the or-
bitals along the diagonal direction of the Fe lattice. The or-
bital d; accommodating the local moment is uniformly ori-
ented on all sites. (iii) A small excess density of charge
carriers is present in the other Jahn Teller orbital d,.

From these assumptions we show that the (7/2,7/2)
magnetic order can be naturally explained, as well as the
incommensuration induced by excess iron. The key mecha-
nisms are the formation of one dimensional chains induced
by the Jahn Teller ordering, which are coupled together by
double exchange. Part of the structural transition in this sce-
nario is caused by orbital rather than spin ordering. Since this
proposal invokes an intertwining of the spin, charge, and
orbital physics, several testable consequences also emerge
for transport and ARPES experiments. For example, trans-
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port within a single domain is expected to be highly aniso-
tropic, with larger conductivity along the ferromagnetically
ordered diagonal directions. This can potentially be probed
by optical conductivity experiments. Indeed, a number of
anomalies are already observed in transport properties, albeit
in multidomain samples. The electrical conductivity rises
sharply below the ordering transition while the Hall effect
abruptly changes sign.!”

Recently, a similar scenario has appeared to explain the
magnetism and structural transition in FeAs.'*!6 In contrast
to our assumption (ii), the Jahn Teller orbitals are assumed to
order along the lattice directions. The spin wave spectrum
experimentally observed in FeAs was argued to be described
well by such a model.!> Here, we focus on FeTe, for the
reasons described previously, but our approach is very simi-
lar in spirit. If indeed this mechanism is more general, it
allows us to unify phenomena across this family of com-
pounds.

This paper is organized as follows. We first describe mi-
croscopic strongly correlated models for FeTe, which have
S=1 and orbital degeneracy. We then consider how orbital
ordering of a particular kind together with a small conduc-
tivity can drive magnetism, leading to the observed spin or-
der. The characteristics of spin-wave dispersion within this
scenario are presented, and the origin of incommensurate
magnetism with excess iron, is discussed. Finally, experi-
mental consequences of this scenario for nonmagnetic prop-
erties, such as conductivity and ARPES, are described.

II. FeTe: A STRONGLY CORRELATED VIEWPOINT
A. Microscopic model

We first model FeTe in terms of a nearby correlated insu-
lating state. The modifications required to account for metal-
lic conduction are discussed later. We demand that the insu-
lator carries net spin S=1, per Fe atom, based on the ordered
moment observed at low temperatures. Furthermore, we will
require that they exhibit orbital degeneracy. The only pair of
d orbitals that are degenerate in this tetragonal structure are
the d,, and d,, orbitals. Hence, our theory depends upon
having an odd filling of this orbital pair. Two possible micro-
scopic scenarios for the d® configuration of the Fe*™? ion are
sketched in Fig. 2. In the first, there is one electron available
to occupy the two degenerate orbitals, while the orbital d,, is
singly occupied. Interestingly, this is the orbital configuration
suggested by the crystal field splitting of the Fe sites. For a
perfect tetrahedral arrangement of Te ions, the d,2_,» and d»
orbitals lie below the triplet of d,,,d,.,d,.. The distortion of
the tetrahedron in this material brings the d,, below the de-
generate d,,,d,,, leading to the orbital structure in Fig. 2.
Note, the sense of the distortion in FeTe is opposite to that in
FeAs, where a similar exercise leads to a different orbital
ordering.* Since such a local picture of electronic orbitals
may not capture the physics of FeTe we also point out a
different scenario [Fig. 2(b)], where the orbital ordering is
closer to what is predicted by the band structure calculations
in FeAs.!” If we order the dispersing bands by their center of
mass, we end up with the ordering shown. Here too, the
electron assignment can lead to a S=1 orbitally degenerate
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FIG. 2. Two scenarios for the level spacing of the iron atoms’
d-orbitals which lead to orbital degeneracy and S=1. Each set of
orbitals grouped together is assumed to fill up according to Hund’s
rule before any electrons are added to the next group of orbitals.
This occurs if the crystal field splitting between orbitals in different
groups is greater than the Hund’s coupling. Scenario 1 results in a
single electron having to decide between two degenerate orbitals
while Scenario 2 results in a single hole which is orbitally degen-
erate. We mainly discuss Scenario 1.

configuration, but now the degenerate pair of orbitals con-
tains three electrons. We note that in both scenarios, the ac-
tive orbitals are dxy,dxz,dyz, which are also the ones expected
to be present at the Fermi energy from weakly correlated
band structure calculations of these materials.!”!® The two
scenarios are particle hole conjugates of one another, if one
focuses on the active triplet of orbitals. Henceforth, we will
assume Scenario 1 for concreteness, as it corresponds better
with experimental facts. The results there can be easily tran-

scribed to Scenario 2, by a particle hole transformation.

B. Orbital and magnetic order

Let us discuss first the pair of degenerate orbitals in Sce-
nario 1, filled by a single electron. Later, we will include the
third orbital. It is convenient to rotate orbitals by 45°, and
define another basis that point along the diagonals dy,y,
=é(dxzid},z). Let d},d} be the creation operators for elec-
trons in these diagonal orbitals. The Hamiltonian for this
system is:

H=HKE+HU+HJT? (1)

where the first term is the hopping Hamiltonian, and the
second and third terms refer to interactions and coupling to
lattice phonons that lead to the Jahn Teller effect.

1 >
HU:EEU(nr_l)nr_JHSU'SQr, (2)

where 7, is the electron density at site r and §a,=%d2r&da, is
the spin on site r in orbital a. In the limit of strong repulsion
U and a single electron per site, (n)=1, we obtain an insu-
lating state with orbital degeneracy. This degeneracy is typi-
cally resolved by the Jahn Teller effect. A lattice distortion,
which breaks symmetry and splits the degeneracy occurs.
The precise distortion that is realized is hard to predict, so we
will assume that it is indeed of the type required to obtain the
structural transition seen in this material. This involves a
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FIG. 3. Degeneracy lifting by Jahn Teller distortion. The tellu-
rium atoms projected into the xy-plane form a square in the undis-
torted compound, which distorts into a rhombus, so that A>B,
lowering the energy of the shaded orbital.

uniform orthorhombic distortion that changes the relative
lengths of the two diagonal bonds. If we denote by A and B
the classical bond lengths for the two diagonals (so A=B in
the tetragonal state), then we will assume that the lattice
coupling is given by:

HJT= - L’((A - B)E (d-i‘rdlr_ d;rer) + g(A - B)2 (3)

(See Fig. 3). The orbital ordering implies that, in scenario 1,
the single electron on each site always occupies the same
orbital, i.e., ny,=1 and n,,=0, or vice versa. For concreteness
let us suppose that the X diagonal expands. Then the elec-
trons occupy orbital 1 (dy,) while orbital 2 (dy,) is empty,
because it is higher in energy. Since each site has an unpaired
electron, we can now derive the Hamiltonian governing their
magnetic moments.

In the insulating limit, the magnetic interaction is gener-
ated by virtual hopping of electrons. To proceed, we need to
specify Hgg. Clearly, given the geometry of the Xz, Yz orbit-
als, hopping along the diagonals will be very anisotropic. We
denote the X(Y) diagonal hopping of the dy.(dy.) orbital by
t,, and let ¢, be the hopping of each in the orthogonal direc-
tion (see Fig. 4). The figure suggests that t,> 1, (see Ref. 19),
and for FeAs the nearest neighbor hoppings are compara-
tively small as well. Hence, we will simply work with the
exchange interaction induced by 7,. Note, the next neighbor
hopping only operates within a single sublattice (labeled A
and B in the figure), so here we consider just the A sublattice.
The #, hopping of the electrons in the Xz orbital will intro-
duce antiferromagnetic exchange, but only along the X diag-
onal J2X=t§/ U. This will lead to antiferromagnetic order
along this diagonal direction. Note, assuming Scenario 1, this
antiferromagnetic direction will be the expanded diagonal of
the distorted compound, which is consistent with the ob-
served wave numbers of the magnetic and structural
distortions.* Note, although the diagonal chains are ordered,
there is negligible coupling between chains at this moment
(because of the smallness of #,). Below, we will see there is
a possibly more important mechanism that can lock the mag-
netic order in the chains together, the double exchange inter-
action.
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a)

FIG. 4. How the spin-order on sublattices arises out of the or-
bital order. The solid and dotted lines show the projections of the
dy, and dy, orbitals. (a) The second nearest neighbor hopping am-
plitudes, which determine the order in the sublattices. Electrons stay
in the same orbital when they hop to the second nearest neighbor.
The hopping for each orbital is anisotropic, with an anisotropy that
depends on the orbital, so each orbital forms a set of one-
dimensional chains. Electrons can hop between nearest neighbors as
well (not shown). (b) Generating the spin order in the A-sublattice.
(The iron atoms in the B-sublattice are indicated by x’s.) The dy,
orbitals are shaded to indicate that they are filled and the dy, orbit-
als are lightly doped. The dy, orbitals form one-dimensional Mott
insulators parallel to the X-axis with antiferromagnetic coupling
Jox. The dy, orbitals form one-dimensional metals parallel to the ¥
direction. Ferromagnetic order along Y lowers the kinetic energy of
the metals by about 7, 6.

C. Double exchange

Hopping of electrons between the antiferromagnetic
chains can readily occur if they occupy the dy, orbital. How-
ever, in an orbitally ordered insulator, these are assumed to
be empty. Given the empirical fact that FeTe is a metal, we
assume a small occupation 6 of electrons in this orbital. This
can arise because of “self-doping,” i.e., if the orbital disper-
sion cannot be completely neglected, a fraction of carriers
from one of the “filled” bands (for example d,,), could be
transferred to an empty band, i.e., this orbital. In addition to
the self-doping, FeTe always occurs with a slight excess of
Fe i.e., Fe,,Te. The electrons from the additional Fe*? ions
also contribute to 6.

Such an excess carrier density will lead to ferromagnetic
interactions between chains, via the double exchange mecha-
nism. An electron hopping in this nearly empty orbital will
be Hund’s coupled to the dy. electron according to Eq. (2).
The Hund’s coupling is typically large and will force both
electrons to have the same spin. If the electron is to hop to
the neighboring chain, the spins must be parallel. Then, it
can enjoy a lowering of kinetic energy by —2¢,. Thus, a fer-
romagnetic arrangement of spins will have a lower energy
than an antiferromagnetic arrangement by an amount 2|t,|4,
which can roughly be viewed as a ferromagnetic coupling
along the Y diagonal (strictly speaking this is a nonlocal
interaction, and cannot be assigned solely to the diagonal
bond). Thus, J,y=-2|t,|8. The coupling J,y along the X di-
rection remains antiferromagnetic. The double-exchange
along X generated by the holes left behind in the donor
xy-orbitals would be negligible if the effective mass for their
motion turns out to be large enough. With this combination
of exchange constants, the magnetic ordering on a single
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sublattice is shown in Fig. 4. Note that it has the wave vector
(7/2,7/2), as required.

D. Coupling the sublattices

So far, the two sublattices (A and B) are independent.
When the doping is small, the dominant spin interaction J,
between nearest neighbor sites will arise from antiferromag-
netic exchange from the electrons in the half filled d,, or-
bital. (The nearest neighbor hopping of electrons in the dy,
orbitals would induce a smaller ferromagnetic interaction
controlled by the Hund’s coupling, since the dominant hop-
ping is expected to move them to d,, orbitals after a hop.) We
will also invoke a coupling to the lattice to generate a biqua-
dratic interaction term in order to lock in the commensurate
wave number, leading to the net Hamiltonian describing the
interaction of spin 1 atoms on a square lattice:

ij (i)

Jox=01U, Joy==2|t,|8 and J;>0, and J, is the same for
both nearest-neighbor bonds. The phase diagram of this
model as a function of increasing K is included on the y-axis
of Fig. 6. The S;-S; terms alone would lead to an incommen-
surate spiral state,”’ where the nearest neighbor spins are
close to being orthogonal to one another (this is called the
“single spiral state” below). This state, even in the small
incommensuration limit, is significantly different from the
experimentally observed collinear state.

To stabilize the commensurate (%T ,—757) state, we take into
account the biquadratic spin interaction (=K (S,-S,)?), which
is a well-known consequence of spin-lattice coupling. This
term prefers collinear magnetism. As we will see below, even
modest values of the spin phonon coupling K can induce
locking of the commensurate, collinear phase observed in
experiments. In particular, we show below that the critical
coupling required to induce collinear order K= J%/ Jorx can be
parametrically smaller than J;. Coupling of spin and lattice is
presumably essential to getting a commensurate state at this
wave vector.

Phase Diagram: The phase diagram can be obtained by
taking the ansatz of a pair of coplanar spirals on the two
sublattices with an arbitrary phase ¢ between them, and
wave vector k along diagonal X. This is probably sufficiently
general to capture the ground states of Eq. (4), because the
ferromagnetic coupling along the Y-direction prevents the
spin from varying in that direction. Let the azimuthal angle
of spin i be ;. Then the ansatz reads:

=k )+ (- 1) ©

Here, (k,—k) is the wave number of the spin arrangement.
(This state is ICA, from Ref. 11.) Note, the experimentally
observed collinear state corresponds to k=7/2 and ¢=1/2.
Along any row, the angle between adjacent spins alternates
between k— ¢ and k+ ¢p. For k=¢=1/2, the spins therefore
alternate from parallel to antiparallel.

Minimizing the energy per site,
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FIG. 5. (Color online) Comparison of the spin wave dispersion for order stabilized by J; versus by a ferromagnetic diagonal interaction.
The dispersions are plotted as a function of (ky,ky)=(k,~k,,k,+k,) in the upper pictures. The other graphs show the dispersion in the ¥
direction. (a) The spin wave spectrum for Jox=J,y=1,J;=1.47,K=0.265,J3=0.4, which have the same effective J;,, ; as in Ref. 11. (b) This
shows the spectrum for J,y=-J,y=1,J,=0.7,K=0.265,J3=0. The sign of J,y is flipped to describe a ferromagnetic coupling, while J5 is set
to zero. [J,’s value is decreased relative to (a) to stabilize the order.] Note that the upper band changes from a hill shape to a valley.

Elk, ] =Jox cos 2k +2J, cos k cos ¢
— K(1 + cos 2k cos 2¢) —2|t,|8 (6)

over ¢ and k shows that there is a transition between a
“single spiral” with ¢=0 and incommensurate wave vector
k:§+0(%) and the collinear state k=7/2,¢=m/2 when
4K(J,y—K)=J%. For small K<J,, the critical K is
~J3/4J,y.

We can understand this result intuitively as follows. The
spiral order occurs to lower the nearest neighbor exchange
energy. The coupling of a spin to its neighbors to the left and
right cancels in the perfectly collinear state. To take advan-
tage of J;, the neighbors should therefore make an angle less
than 180°, and the central spin should point opposite to the
sum of the two neighboring spins. If J; is small compared to
Jox, then the neighbors are nearly antiparallel, so J; has a
very weak effect, explaining why the critical value for K is
not of order J; as one might have expected, but rather second
order in J;.

Spin Waves: To contrast this scenario with others that pre-
dict the same magnetic ordering pattern, we calculate the
spin wave spectrum for the model Eq. (4). We expect inelas-
tic neutron scattering experiments in the future to be able to
check this prediction. In particular, we contrast it with a re-
cent theory,''?! in which there is a sufficiently large third
neighbor exchange J; and the monoclinic distortion alters the
first and second nearest neighbor interactions, leading to the
observed magnetic order. In our model, the magnetic order
is stabilized just by the anisotropy of J,, with one ferromag-

netic and one antiferromagnetic direction. (Refs. 11 and 21
also include the anisotropic couplings but their third
neighbor hopping is essential for stabilizing the order with-
out ferromagnetic directions.) Note, while doing the spin-
wave calculations, we expand about the equilibrium spin
state, and hence, the biquadratic interaction effectively leads
to weak (w) and strong (s) nearest-neighbor bonds, J;
#J1,,- That is, our spin wave dispersion is reproduced by a
model involving only quadratic spin couplings, where
J1S1-8,-K(S;-8,)*=(J;-2K{S;-S,))S;-S,.  Therefore,
the bonds between parallel spins are effectively weaker than
those between antiparallel spins, similar to Refs. 11 and 21.
The spin-wave spectrum is obtained using the Holstein-
Primakoff expansion (see e.g. Ref. 22). Figure 5 compares
the dispersions one expects in the two models, the first with
a strong J5 and ours with a ferromagnetic diagonal coupling.
Note, the upper band of the dispersions curves in the oppo-
site direction along the Y-axis, because of the ferromagnetic
coupling J,y.

E. Doping induced incommensuration

The properties of Fe,,,Te have been experimentally in-
vestigated as y is varied. Experimentally, Fe, +Te is found to
have incommensurate spin order when y is large enough,
with an incommensurate wave vector that deviates from
(w/2,/2) linearly with doping.* One of the effects of the
excess iron, which is believed to be in the Fe* state, is to
electron dope the system by 2y electrons. Here, we consider
how this may be explained as a result of the increasing elec-
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FIG. 6. The phase diagram as a function of K and doping for
Ji =%J2X, t5=1.5J,x, using the infinite Hund’s coupling approxima-
tion. The three phases are the doubled spiral, the single spiral, and
ordinary (77, ) antiferromagnetism. Note that both the single and
doubled spirals are constant along wave fronts parallel to Y. In the
perpendicular direction, the double spiral alternates between rotat-
ing through small angle and angles close to 180°, while the single
spiral rotates through around 90° each time. A calculation which
takes fluctuations or the finiteness of the Hund’s constant into ac-
count would find a finite range of dopings where the commensurate
phase is stable. The solid/dashed line represents a discontinuous/
continuous transition. The discontinuous transition boundary should
actually be replaced by a wide swath of phase separation.

tron density 6=2y in the Yz orbital, which makes nearest
neighbor hopping more important. This will lead to incom-
mensurate order that is related to the doping level.

To see this, we will consider two-dimensional motion of
the doped electrons, which can occur only if hopping ampli-
tudes other than 7, are taken into account. These types of
motion are limited to the diagonal stripes of similarly ori-
ented spins in the commensurate (3, %) spin pattern, increas-
ing the kinetic energy, according to the uncertainty principle.
Such a kinetic energy effect has a stronger dependence on
the relative angle between a pair of spins when the angle is
close to 180° than the J,y interaction considered above, so it
is able to distort the commensurate collinear state with wave
vector (5 ,-75) and ¢=m/2, into a “double spiral,” a slightly
twisted version of the same state, of the form Eq. (5), and
with ¢=7 and k=7, even when the doping is weak.

To understand the kinetic energy effect, we assume a uni-
formly varying classical spin configuration and minimize the
energy of a single Hund’s coupled electron, Eq. (2), hopping
in this background. The resulting kinetic energy (KE.;,)
times electron density, KE,;,0 is added to the magnetic en-
ergy Eq. (4), and this total energy is minimized to obtain the
phase diagram in Fig. 6. A shortcoming of this phase dia-
gram is that the spiral phases may not be stable against phase
separation (see below).

We will now focus for simplicity on determining the ki-
netic energy due to hopping via ;. We checked also that the
nearest neighbor #; of Ref. 19 leads to a very similar phase
diagram. The kinetic energy is computed from the hopping
Hamiltonian H,£=—t;zid'gz(r,.m—y)dn(r,.)+H.c., which fa-
vors ferromagnetic alignment along the X-diagonal. Since
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the Hund’s energy is larger than the #’s, the natural basis for
spin states on each site are the states quantized along the
local spin orientation of the magnet (6;). If the Hund’s en-
ergy is assumed to be infinite, we can assume that the elec-
tron state is always aligned with the local spin. Such a state
with momentum p is represented by the following electron-
wave function,

1 /%2
bi ( 002 e, (7

— ?
V2

We can now find the variational energy of this wave func-
tion, and minimize with respect to p.

The expectation value of the kinetic energy for a bond
between a pair of sites is 2té%(wj¢j). Aside from the phase
factor from the momentum, this overlap is proportional to
cos k for spins adjacent along the X direction (the cosine of
half the angle between the spins). In particular, because the
spin is conserved during the hopping, the electron cannot

hop at all onto a site with an antiparallel spin. The electron

kinetic energy is 2t, cos(p,+p,)+2t) cos(p"—gpx)cos k. Mini-

mizing over p, we obtain KE,;,==2|t,|-2], cos(k)|. Com-
bining this with the previously obtained energy in the ab-
sence of 5, Eq. (6), and minimizing with respect to ¢ and k
we obtain the double spiral. This can be easily seen when the
doping is very weak: focusing on the competing terms J,y
and 16, and assuming k=73 to find E=J,y cos(2k)

~2t3fcos K| = oyt 2oy(k— 222630k~ 2, so [k-Z|=5>
minimizes the energy. The incommensuration therefore is
proportional to the doping strength, as observed experimen-
tally.

If we allow the electrons to hop virtually into states that
violate Hund’s rule, the commensurate state survives over a
finite range of dopings. When the twisting is very small, it
becomes easier for an electron that is trying to hop along the
antiferromagnetic diagonal to hop through the Hund’s violat-
ing states than to stay in states that are parallel to the local
spin but which have very small overlaps. In this case, there is
no reason for the spin order to distort at all. The virtual

, or

12
hopping has the greater efficiency when |# cos k| <|IJLH
(using the result for k at small 8), 6= %( (A more detailed
calculation gives the same result.) Quantum fluctuations also
allow the electrons to hop more easily in this direction, by
temporarily making adjacent atoms become oriented parallel
to one another.

A very similar phase diagram appears for #; hopping. This
hopping probably has weaker effects, however, since the or-
bital switches with each hop. This implies that an electron
alternates between Hund’s rule violating and satisfying
states, so that the amplitude for a pair of these steps is of

2

order Jt—]H This process leads to an antiferromagnetic interac-
tion along rows and columns, but this causes incommensu-
ration just as the ferromagnetism induced by motion along
the diagonals did.

Although these calculations explain how incommensurate
order can occur, the order differs from the experimentally
proposed pattern in Ref. 4. The proposed order has the spin
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dominantly along the Y direction whose magnitude is modu-
lated with an incommensurate wave vector, and also a spin
spiral composed of the orthogonal spin directions, at the
same wave vector. While further experimental work is re-
quired to confirm the true nature of the complex incommen-
surate order, we note one interesting measurement, that
orthorhombic symmetry is recovered at higher doping, (e.g.,
at x=0.141 #) where the incommensurate state is stabilized.
This is consistent with our assumption that the monoclinic
part of the distortion is strongly coupled to spin order. Figure
1 shows that the sense of the monoclinic distortion is corre-

lated with the bond energies §,~-§ ;- Shifting the spin ordering
and thus the pattern of bond energies over one site would
cause the lattice to tilt in the opposite direction along the Y
axis. For an incommensurate order of the kind proposed in
Ref. 4, these bond energies are also modulated with an in-
commensurate wave vector, which removes the monoclinic
distortion. In contrast, for the orders described by Eq. (5),
including both the double and single spirals we have consid-
ered, the bond energies are independent of incommensura-
tion, hence a monoclinic distortion is expected throughout.
An example of a spiral order that would not induce a mono-
clinic distortion, close to the commensurate state of interest
is two oppositely propagating spirals: 6;=(—=1)"*ik(x;~y,),
with k close to 7. Effects that we have neglected, including
spin anisotropy and the effect of the excess iron moments,
can modify the precise form of the incommensurate state.

Phase Separation: An additional shortcoming of this ex-
planation of the incommensurate order is that the spiral
phases can be unstable to phase separation.”? The doped
electrons prefer to be segregated into high and low density
regions, with different spin orders. The predictions above can
still be relevant, because repulsive forces between electrons
help to limit the phase separation.

Figure 7 shows the energy as a function of doping both
without and with a strong short-range repulsion, described
by adding a term %V&z to the energy functional. In the figure,
K=0.4 and the other parameter values are taken from Fig. 6.
A concave down portion is unstable to phase separation. For
a doping in between A and B, i.e., 0.1 =6=0.6, dividing the
compound up into two regions with the dopings 0.1 and 0.6
gives a state with a lower energy, whose energy is repre-
sented by the tangent. In this case, the ground state is a
mixture between a doubled spiral with a low-electron density
and an antiferromagnetically ordered high-density portion.

The Coulomb interactions can have one of two conse-
quences; they either stabilize a uniform state as just de-
scribed (if the force is strong enough at short distances), or
else they force the two coexisting phases to fill small alter-
nating portions of the FeTe, rather than becoming completely
segregated. The ordering with alternating regions of the
(3.%) and (7, ) phases could also be incommensurate.

Additional Doping: A surprising order may arise if the
compound is sufficiently doped, which would illustrate our
central assumption that the orthorhombic part of the struc-
tural distortion arises from orbital, rather than spin ordering.
In our model, large electron doping would drive ferromag-
netic order on each of the A and B sublattices. (This opti-
mizes the electron kinetic energy.) The sublattices continue
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FIG. 7. (Color online) Energetics of phase separation. The solid
curve shows the energy of states with uniform doping, with repul-
sion V=6J,x (upper curve) and without. The parameters are the
same as in Fig. 6, with K=0.4. The concave down portion of each
energy curve is unstable to phase separation. The points labeled C
show the unphysical transition between the doubled and single-
spiral states. The dashed line corrects the upper energy-curve, by
showing the energy of the state where the A and B phases coexist.

to couple together antiferromagnetically, leading to (77, 7)
magnetic order. In Fig. 6, the order varies from commensu-
rate, to the double spiral phase, to the (7, ) antiferromag-
netic phase as the doping increases along a line at K
=0.5J,x. (For a smaller value of K, the pure spiral phase
occurs before (77, 7) antiferromagnetism sets in.) Note how-
ever, that while (7, 7) antiferromagnetic order is compatible
with tetragonal symmetry, here we expect orbital order to
persist and result in an orthorhombic distortion, clearly sig-
naling the independence of structural and magnetic order.

On the other hand, hole doping weakens the kinetic en-
ergy effect to the point where each sublattice has ordinary
antiferromagnetic order, and the biquadratic interaction ori-
ents the two sublattice-spins parallel to each other, leading to
(7,0) magnetic order of the type seen in the FeAs materials.
Again, while the (7,0) ordering would be accompanied by
compression along the x or y axis if this were magnetically
driven, here, we expect the orbital ordering to remain the
same, so the diagonal distortion would not change. A more
direct test of whether the distortion or the magnetic ordering
is the primary phenomenon is to apply a strong magnetic
field to eliminate the magnetic ordering and see whether the
distortion remains. This would be possible if the exchange
interactions are weak, or can be weakened by modifying the
compound somehow, e.g., by applying pressure.

III. TRANSPORT AND SINGLE ELECTRON PROPERTIES

The main consequence for transport of the orbital
ordering-induced quasi-one-dimensionality is that the con-
ductivity should be strongly anisotropic. Below the orbital
and magnetic ordering temperature, the excess electrons in
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the Yz band move much more readily in the Y direction,
because 7, is greater than 7,,#,. Furthermore, the spins are
ferromagnetically aligned along this direction, and can hence
propagate easily. To travel in the orthogonal direction, they
must cross through diagonals where the spins are oppositely
aligned. While a difference in electrical conductivity along
the two diagonal directions is hardly surprising given the
symmetry of the low-temperature state, the specific predic-
tion here is that this will be a significant effect, and the
nature of the anisotropy is that the low conductance is to be
found along the antiferromagnetically ordered diagonals.
Experimentally, a Drude peak has been observed to de-
velop below the ordering transition.!” Since a test of aniso-
tropy demands a single domain, optical conductivity on a
sample where the domain size is larger than the spot size is
required, and should be feasible. There, depending on the
direction of the polarization, a different conductivity should

result. More specifically, if we write a’(m):”lf:f1 J;m, both
the effective mass m™ and the scattering rate 7 are expected
to be anisotropic. The scattering rate is expected to be large
in the X-direction because of scattering by incoherent spin
waves,”* a feature that is particularly prominent for low fre-
quencies.

ARPES Given the quasi-one-dimensional dispersion along
the diagonals, a narrow elliptical Fermi surface tilted at 45°
to the Fe-Fe bonds is expected to appear below the ordering
temperature. Moreover, these would be orbitally polarized,
which can be experimentally tested using polarized light to
determine orbital content along high symmetry directions.
When the scattering plane containing the photon and the
ejected electron is perpendicular to the surface, and along,
say, the Yz plane, selection rules imply that S(P) polarized
light with polarization perpendicular to (parallel to) the scat-
tering plane, ejects only electrons in the Xz(Yz) orbital. The
strongly dispersing part of the Fermi surface should therefore
disappear for S polarized light, and will have the form shown
in Fig. 8, if a single domain is imaged. The polarization
dependence provides an experimental signature even from
multidomain data. Current ARPES data on FeTe’ has not
reported such a signature; however, the intensity associated
with this Fermi surface segment is hard to estimate reliably.
Direct experimental probes of orbital ordering should also be
able to test this scenario. We hope this prediction will stimu-
late further experiments.

IV. CONCLUSIONS

We have argued that FeTe, a material closely related to
the recently discovered Fe based superconductors, is likely to
be a fairly strongly correlated material. This motivates us to
use a local picture of the electronic structure, which in turn
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FIG. 8. The shape of the Fermi surface of the metallic electrons
in the Yz orbitals, for the actual Brillouin zone. We predict that the
surface is narrow in the ferromagnetic direction. Furthermore, cer-
tain parts of the ellipse should disappear in ARPES with polarized
light. The dashed portions of the Fermi surface fade out for S po-
larization. This tests the assumption that the anisotropy results not
from the lattice distortion but because the dispersing electrons are in
a single orbital.

can explain, quite naturally, the unusual magnetism observed
in this material. The key ingredient of this scenario is an
emergent quasi-one-dimensionality arising from orbital or-
dering along the diagonals. While this theoretical scenario is
a simplified caricature of the real system, it does make sev-
eral qualitative predictions for experiments, which should be
readily testable. The conductivity should be anisotropic, with
higher conductivity along the ferromagnetic direction, if the
unusual magnetic order is caused by the kinetic energy of
conduction electrons. Certain parts of the electron Fermi sur-
face should disappear in polarized ARPES, indicating the
orbital ordering (see Sec. III for the discussion of anisotropic
conductivity and ARPES). The dispersion of spin waves
measured by inelastic neutron scattering should indicate fer-
romagnetic coupling along the Y direction (see Fig. 3).
Lastly, if the Jahn Teller effect causes the orthorhombic dis-
tortion, then the distortion should persist even when the mag-
netic order is removed or changed to one which would not be
expected to favor lattice distortion on the basis of symmetry
(see the final portion of Sec. IT E).
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